翻訳と辞書 |
Lindeberg's condition : ウィキペディア英語版 | Lindeberg's condition In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables. Unlike the classical CLT, which requires that the random variables in question have finite mean and variance and be both independent and identically distributed, Lindeberg's CLT only requires that they have finite mean and variance, satisfy Lindeberg's condition, and be independent. It is named after the Finnish mathematician Jarl Waldemar Lindeberg. ==Statement==
Let be a probability space, and , be ''independent'' random variables defined on that space. Assume the expected values and variances exist and are finite. Also let If this sequence of independent random variables satisfies Lindeberg's condition: : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lindeberg's condition」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|