翻訳と辞書
Words near each other
・ Lindcove, California
・ Linde
・ Linde (surname)
・ Linde (Tollense)
・ Linde Church
・ Linde Hydraulics
・ Linde Klinckowström-von Rosen
・ Linde Nijland
・ Linde River
・ Linde van den Bosch
・ Linde Werdelin
・ Lindean
・ Lindeberg
・ Lindeberg (station)
・ Lindeberg Station
Lindeberg's condition
・ Lindeberg, Akershus
・ Lindeberg, Oslo
・ Lindebeuf
・ Lindeborg
・ Lindegaard
・ Lindegren
・ Lindek
・ Lindel Frater
・ Lindel Hodge
・ Lindel Hume
・ Lindel Tsen
・ Lindela Figlan
・ Lindela Ndlovu
・ Lindela Repatriation Centre


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lindeberg's condition : ウィキペディア英語版
Lindeberg's condition
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables. Unlike the classical CLT, which requires that the random variables in question have finite mean and variance and be both independent and identically distributed, Lindeberg's CLT only requires that they have finite mean and variance, satisfy Lindeberg's condition, and be independent. It is named after the Finnish mathematician Jarl Waldemar Lindeberg.
==Statement==

Let (\Omega, \mathcal, \mathbb) be a probability space, and X_k : \Omega \to \mathbb,\,\, k \in \mathbb, be ''independent'' random variables defined on that space. Assume the expected values \mathbb\,() = \mu_k and variances \mathrm\,() = \sigma_k^2 exist and are finite. Also let s_n^2 := \sum_^n \sigma_k^2 .
If this sequence of independent random variables X_k satisfies Lindeberg's condition:
: \lim_ \frac\sum_^ \mathbb\big(- \mu_k)^2 \cdot \mathbf_ is the indicator function, then the central limit theorem holds, i.e. the random variables
:Z_n := \frac
converge in distribution to a standard normal random variable as n \to \infty.
Lindeberg's condition is sufficient, but not in general necessary (i.e. the inverse implication does not hold in general).
However, if the sequence of independent random variables in question satisfies
:\max_ \frac \to 0, \quad \text n \to \infty,
then Lindeberg's condition is both sufficient and necessary, i.e. it holds if and only if the result of central limit theorem holds.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lindeberg's condition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.